Journal of Organometallic Chemistry, 65 (1974) 51–56 ©Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ORGANOTELLURIUM CHEMISTRY

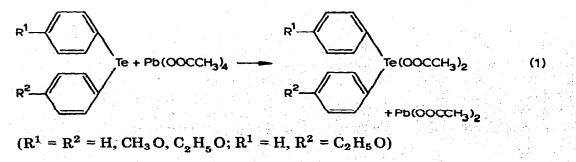
I. SYNTHESIS, REACTIONS AND SPECTRAL CHARACTERISTICS OF DIARYLTELLURIUM DIACETATES

BHUVAN C. PANT

Department of Chemistry, The University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET (Great Britain)

(Received May 21st, 1973)

Summary


Diaryltellurium diacetates have been prepared in excellent yields by the oxidation of diaryltellurides with lead tetraacetate and also by the reaction of diaryltellurium dichlorides with silver acetate. Hydrolysis, reduction and exchange reactions of these derivatives and their spectral data are described.

Introduction

Whereas the syntheses and reactions of diaryltellurium dihalides have been studied in detail [1 - 3], relatively little is known about the chemistry of corresponding dicarboxylates. Although there are two reports which mention the preparation of these derivatives [4, 5], no systematic investigation has previously been undertaken. This paper describes the syntheses, reactions and spectral data of some new diaryltellurium diacetates.

Results and discussion

The synthesis of diaryltellurium diacetates has been achieved by the oxidation of diaryl tellurides with lead tetraacetate in hydrocarbon solvents (benzene or toluene) (eqn. 1).

51

	Organies united of the second	(%)	() 8	Anulyses found (Calcd.) (%)	•
				C	Н
(C ₆ H ₅) ₂ Te + Pb (OOCCH ₃) ₄ (C ₆ H ₅) ₂ TeCl ₂ + 2CH ₃ COOAg	(C ₆ H ₅) ₂ Te(OOCH ₃) ₂	98 94	139-141	48.19 (48.06) 48.16	4.02 (4.03) 4.03
<i>Q</i> •-C ₂ H ₅ OC ₆ H ₄) ₂ T ₆ + Pb(OOCCH ₃) ₄ P-C ₂ H ₅ OC ₆ H ₄) ₂ T ₆ Cl ₂ + 2 CH ₃ COOAg	(P-C ₂ H5OC ₆ H4)2Te(OOCCH ₃)2	96 89	111-011	49.17 (49.22) 49.29	4.91 (4.96) 4.89
P-C2H5OC6H4(C6H5)Te + Pb(OOCCH3)4 P-C2H5OC6H4(C6H5)TeCl2 + 2CH3C0OAg	<i>р</i> -С ₂ Н ₅ ОС ₆ Н ₄ (С ₆ Н ₆)Те(ООССН ₃) ₂	97 90	114116	48.65 (48.70) 48.64	4.51 (4.54) 4.56
(p-CH ₃ OC ₆ H ₄)2Te + Pb(OOCCH ₃) ₄	(<i>p</i> ·CH ₃ OC ₆ H ₄) ₂ Te(OOCCH ₃) ₂	68	135137	46.96 (47,00)	4.37 (4.38)
(p-CH ₃ C ₆ H ₄)₂TeCl ₂ + 2CH ₃ COOAg	(p-CH ₃ C ₆ H ₄)2Te(OOCCH ₃) ₂	06	178180	60.69 (50.52)	4.80 (4.71)
$(C_6H_6)_2 TeCl + 2C_6H_5 COOAg$	(C ₆ H ₅) ₂ Te(OOCC ₆ H ₅) ₂	92	169—161	59,56 (59,59)	3.81 (3.85)

÷

52

The reaction goes to completion at room temperature giving diaryltellurium diacetates in excellent yields. The isolation of the products presents no problem because of their solubility in the solvent used for the reaction, from which lead diacetate precipitates.

Diaryltellurium dicarboxylates were also synthesized by the reaction of diaryltellurium dichlorides with silver carboxylates in boiling benzene or dioxane (eqn. 2). In view of the cost of silver salts and of the lower yields, this method seems to be less attractive than that using lead tetraacetate.

 $(R^1 = R^2 = H, C_2H_5O, CH_3, R^3 = CH_3; R^1 = H, R^2 = C_2H_5O, R^3 = CH_3; R^1 = R^2 = H, R^3 = C_6H_5)$

Various reactions, m.p.'s, yields and analytical data are summarized in Table 1.

Diaryltellurium diacetates are colourless, crystalline solids soluble in benzene, toluene, acetone, methanol and carbon tetrachloride. They can be stored over long periods without hydrolysis or decomposition.

Like diaryltellurium dihalides [6, 7], the diacetates could be hydrolyzed or reduced according to the reactions shown in eqn. (3). The diacetates also undergo "acetoxy group exchange" reactions of the type shown in eqns. (4) and (5).

$$(C_{6}H_{5})_{2}Te(OOCCH_{3})_{2} \xrightarrow{KOH \\ H_{2}O} (C_{6}H_{5})_{2}TeO$$
(3)
$$(C_{6}H_{5})_{2}Te(OOCCH_{3})_{2} \xrightarrow{K_{2}S_{2}O_{5}} (C_{6}H_{5})_{2}Te$$
N₂H₄·H₂O

 $(C_{6}H_{5})_{2} \operatorname{Te}(OOCCH_{3})_{2} + 2 \operatorname{KI} \xrightarrow{(CH_{3})_{2}CO} (C_{6}H_{5})_{2} \operatorname{TeI}_{2} + 2 \operatorname{CH}_{3}COOK$ (4) $(C_{6}H_{5})_{2} \operatorname{Te}(OOCCH_{3})_{2} + 2 (CH_{3})_{3} \operatorname{SiCl} \longrightarrow (C_{6}H_{5})_{2} \operatorname{TeCl}_{2}$ (5)

+ $2(CH_3)_3 SiOOCCH_3$

From infrared data, the structures of $(C_6H_5)_2$ Te $(OOCCH_3)_2$, $(C_6H_5)_2$ Te $(OOCC_6H_5)_2$ and $(p-C_2H_5OC_6H_4)_2$ (OOCCH₃)₂ are considered to be based on a four coordinate ψ -trigonal bipyramidal arrangement of groups about the central tellurium atom. There is evidence for non-equivalence of carboxylate groups in both the solid state and solution for $(C_6H_5)_2$ Te $(COCC_6H_5)_2$ and for $(p-C_2H_5OC_6H_4)_2$ Te $(OOCCH_3)_2$. The carboxylate groups are "ester-like" as in related organotin compounds (for details regarding structural considerations of

والوالية والوارية معاركة والمراجعة والمراجعة والمراجعة والمراجعة والمحاصرة والمحاصرة والمحاصر و			a na anna an an an ann an ann an ann an	ومساورة فالمراجع الاعتدادة ومروسا ومقاربا فالمراجع الأخال والمراجع والمراجع والمراجع		
Compound	IR ^d (cm ⁻¹)			PMRb	-	
	v _{ås} (ucu)	رەتە) ₈ 4	r(ppm)	Multiplicity	Assignment	
(C ₆ H ₆) ₂ (00CCH ₃) ₂ (I)	1641	1280	2.00-2.70 8.10	Complex Singlet	Phenyl ring protons 000CCH3	
(p-CH3OC6H4)2Te(OOCCH3)2 (II)	1650	1280	2.32 3.10	Doublet] Doublet]	Phenyl ring protons	`
			6.25 8,10	Singlet Singlet	och ₃ oocch ₃	
(<i>p-</i> CH ₃ CH ₂ OC ₆ H ₄) ₂ Te(OOCCH ₃) ₂ (III)	1654	1280	2.20 3.02	Doublet] Doublet]	Phenyl ring protons	
			5.92	Quartet	CH ₃ CH ₂	•
			8.10 8.65	Singlet Triplet	000CCH3 CH2CH2	1. D
(p-CH3CH2C6H4)Te(C6H5)(00CCH3)2 1650	2 1650	1280	2.20-3.20	Complex	Phenyl ring protons	
(IV)		•	5,95	Quartet	CH ₃ CH ₂	
			8.15	Singlet	00CCH3	
			8.67	Triplet	CH3CH2	
(p-CH ₃ C ₆ H ₄) ₂ Te(OOCCH ₃) ₂	1652	1281	2,15	Doublet 1	Phenyl ring	
A A			3.07	Doublet ^J	protons	
			8.00	Singlet	CH ₃	
			8.20	Singlet	00CCH ₃	•

55

diaryltellurium dicarboxylates see ref. 8). Some IR and ¹H NMR data for diaryltellurium diacetates are given in Table 2.

The reaction of diphenyl ditelluride with lead tetraacetate in benzene at room temperature affords a solution of phenyltellurium triacetate as shown by ¹H NMR spectroscopy [9]. Attempts to isolate the product yielded a white crystalline material of indefinite composition. Infrared analysis revealed the presence of two types of acetate groups together with free acetic acid. Other experiments involving the reaction of *p*-ethoxyphenyltellurium trichloride (1 mole) with silver acetate (3 moles) also gave a white solid of variable carbon content. Infrared analysis of this material gave definite evidence of the presence of a quantity of the anhydride, $[(p-C_2H_5OC_6H_4)TeO]_2O$. Thus it is likely that rapid hydrolysis of initially formed triacetate led to the formation of a mixture of the anhydride with $[(p-C_2H_5OC_6H_4)Te(O)(OOCCH_3)]$.

Experimental

All the reactions were carried out under dry nitrogen. The solvent used for the reaction (benzene, toluene or dioxane) was refluxed over sodium for 4h and fractionated. Tellurium tetrachloride (BDH) was used without further purification. Diaryltellurium dichlorides were synthesized by a recently reported method [10]. Infrared spectra were recorded for Nujol mulls with caesium iodide plates on a Perkin - Elmer 225 or 457 instrument. ¹H NMR spectra were recorded with a Perkin - Elmer R10 instrument. As similar experimental procedures were followed for all the reactions, only typical examples are described.

Reaction between diphenyl telluride and lead tetraacetate

A solution of diphenyl telluride (5.04 g in 25 ml of benzene) was added to a well stirred solution of lead tetraacetate (7.92 g) in benzene (50 ml) during 25 min at room temperature. A white precipitate appeared after the addition of first few drops. The mixture was stirred for an additional 4 h. Filtration followed by evaporation of benzene gave the crude material, which was recrystallised from a mixture of benzene/hexane (1/9) to give pure diphenyltellurium diacetate.

Reaction between diphenyltellurium dichloride and silver benzoate

Silver benzoate (5.0 g) was added in small portions to a stirred solution of diphenyltellurium dichloride (3.5 g) in dioxane (50 ml) at room temperature. An exothermic reaction occurred with the formation of a white precipitate. The mixture was refluxed for 4 h. Filtration followed by evaporation of dioxane from the filtrate and recrystallization of the crude product gave white crystals of diphenyltellurium dibenzoate.

Reaction between diphenyltellurium diacetate and potassium hydroxide

An aqueous solution of potassium hydroxide (1 g) was added to a solution of diphenyltellurium diacetate (1.2 g in 20 ml of ethanol). The mixture was stirred at room temperature for 1 h. Evaporation of ethanol/water gave a white solid which was recrystallized from benzene/hexane (1/4) to give diphenyltellurium oxide (m.p. 185 - 187°); lit. [11] 185°).

Reaction between diphenyltellurium diacetate and trimethylchlorosilane

Diphenyltellurium diacetate (2 g) was refluxed with an excess of trimethylchlorosilane (10 ml) for 1 h. Removal of the excess of trimethylchlorosilane and trimethylacetoxysilane (separated from trimethylchlorosilane by fractionation and identified by its PMR spectra) gave diphenyltellurium dichloride (m.p. 160°, lit. [2] 160°).

References

- 1 N. Petragnani and M. De Moura Campos, Organometal. Chem. Rev., Sect. A. 2 (1967) 61.
- 2 K. Lederer, Justus Liebigs Ann. Chem. 391 (1912) 326.
- 3 K.J. Irgolic and R.A. Zingaro, in E. Becker and M. Tsutsui, (eds.), Organometallic Reactions, Vol. 2, Wiley-Interscience, New York, 1971.
- 4 H.D.K. Drew, J. Chem. Soc. 129 (1926) 3054.
- 5 M. de Moura Campos, E.L. Suranyi, H. de Andrade, Jr. and N. Petragnani, Tetrahedron, 20 (1964) 2297.
- 6 K. Lederer, Chem. Ber. 49 (1916) 1071.
- 7 L. Reichel and E. Kirschbaum, Chem. Ber. 76B (1943) 1105.
- 8 B.C. Pant, W.R. McWhinnie and N.S. Dance, J. Organometal. Chem., 63 (1973) 305.
- 9 B.C. Pant, Tetrahedron Lett., (1972) 4779.
- 10 B.C. Pant, J. Organometal. Chem., in press.
- 11 F. Krafft and R.E. Lyons, Chem. Ber. 27 (1894) 1768.